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1 Linear systems

1.i Solving Linear Systems

Definition 1.1.1: A linear combination of variables z;,z,,...,x,, has the form a,2; +
G9Ty + ...+ a,x,, with a,...,a,, € R.

Definition 1.1.2: A linear equation has the form a,2; +... +a,2, =d, d € R. An n-
tuple (S, ...,.S,,) is a solution of that equation, or satisfies that equation, if substituting
x,; for S; gives a true statement.

In a system of equations , the nth row is denoted with the Greek letter rho as p,,.

Definition 1.1.3: Elementary row operations are operations that can be carried out on

a system of linear equations without changing the solution set.

These operations, all affecting row 7, are:
(i) swapping two rows, p; <> p;, where i # j;
(ii) scaling a row, np; where n € R\ {0};
(iii) adding one row to another row, np, + p;, where n € R\ {0} and i # j.

Lemma 1.1.4: Elementary row operations preserve the solution set of a linear system.
Proof:
Consider some system of linear equations

11Ty + 01 2%g + .. +Qy , Ty = dy;

Qg 1Ty + Qg 9Ty + oo + G , Ty, = dy;

(li71£El + ai721}2 + + ai’nwn = dl

For the tuple (S, S, ...,.S,,) to satisfy this system of equations, we must have that
a; 15 + ... +a,S, =d; and that ay 157 + ... + a5 ,,5,, = dy, and so on; swapping
the order of two of the linear equations in the system does not change the validity
of this solution, as logical and is commutative. Hence operation (i) is an elementary
row operation.

If we multiply a linear equation by some non-zero scalar A, that equation still holds
true, and so the solution set to the system is still valid. Hence operation (ii) is an
elementary operation.

Any solution set that satisfies the system of linear equations must satisfy each
individual equation. If we add two equations together, the solutions will still hold,
so operation (iii) is an elementary row operation. O
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Definition 1.1.5: A leading variable is the first variable in an equation with a non-zero

coefficient.

Definition 1.1.6: A system of equations is in echelon form if each row’s leading variable
is to the right of the leading variable in the row immediately above it, with the exception
of the first row, and any rows with all-zero coefficients are at the bottom of the system.

Definition 1.1.7: In an echelon form linear system, any variables that do not appear
as leading variables are free variables . These can be used as parameters to describe a
solution set.

Ezample: If we have a system of equations

z+3y+2z+6w=>5
z+2w=3

then y and w are free variables. We can parametrise the solution set using y and w as
parameters to say that

-3 —4
+y

f nwe 8§
o wo N

1 0
0 —2
0

but it is more clear to write ¥y and w as new variables:
-3 —4
+ A

ISERSEESIE
O w o N

1
0
0

Definition 1.1.8: A linear equation is homogeneous if the constant is zero.
The Gaussian elimination of a system of linear equations follows the same operations as the
Gaussian elimination of its associated system of homogeneous linear equations.

It is helpful to study homogeneous systems because these always have a particular solution,
the zero vector.

In general, we can say that the general solution to a system of linear equations is the sum of a
particular solution and the solution to the associated system of homogeneous equations.

Lemma 1.1.9: The zero vector is always a particular solution of a homogeneous system
of linear equations.

Proof:
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Take substituting x4, ...,x,, for 0 in each equation in a homogeneous system gives
a;1(0) + ... +ay,(0) =0;...;a; 1(0) + ... + a; ,,(0) = 0 which is trivially true and so
0is a particular solution of any homogeneous system of linear equations. O

Lemma 1.1.10: For any homogeneous linear system of equations, there exist vectors
By, -+, By, such that the solution set of the system is

{0151 Y T R = R},

where k is the number of free variables in an echelon form of the system.

This can be rephrased as: every leading variable in a homogeneous system can be expressed
as a linear combination of free variables.

Proof:

Consider some homogeneous system that has been transformed into echelon form,
ignoring any trivially true equations (0 =0). If the system consists entirely of
tautologies, the lemma is trivially true as there are no leading variables which need
be expressed.

We will denote the index of the leading variable in a row r as £(r).

Consider the bottom equation, row 4,

@ 2(i)%es) T i ey 1 Te(iy+1 T - 05 Ty =0,
where a,(;) # 0. Here, z4;)41, ..., T,, are free variables as there are no rows below this
in which they could be leading. The leading variable z,;) can be expressed in terms
of the free variables:

_(ai,f(i)+1xf(i)+1 tot ai,nxn)
Te(i) = .

;. ¢(4)

Suppose that every leading variable z,(,,) for m € {i—k+1,...,i— 1,3} for arbitrary
k can be expressed as a linear combination of free variables. Then the leading variable
of the kth equation can be expressed as a linear combination of free variables, since
every other variable in the kth equation is either a free variable, or is a leading
variable in a lower equation and so can be expressed as a linear combination of free
variables itself.

Hence if the (i — k;)th leading variable can be expressed as a linear combination
of free variables, so can the (i — k)th equation. Hence by induction, every leading
variable can be expressed as a linear combination of free variables. O

Definition 1.1.11: The set of vectors {0131 + ...+ cnﬁk | ¢1y .y € R} is generated by
by or is spanned by by the set {Bl, ...,ﬂk}.
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Lemma 1.1.12: For a linear system and a particular solution p, the system is satisfied

by the solution set
{5"‘ b+t e By e, € R}-

Proof:

Suppose that s satisfies the system. Then h=3— p satisfies the associated homoge-
neous system since for all k € {1, ...,i},

ap1(81 —p1) + o+ ag (51 —p1) = (ak,151 +...+ ak,nsn) - (%,1?1 + ...+ a‘k,npn)
= dj, — dy
= 0’
where dj; is the constant of the kth equation and s; and p; are the jth components
of § and p respectively.

Suppose that we have a vector h that satisfies the associated homogeneous system,
then p + h satisfies the system because, for all k € {1, ..., k},

ap1(P1+hy) + ooty (pr +hy) = (%,1131 + .t ak,npn) + (%,1’11 + ot ak,nhn)
= dk + 0

Theorem 1.1.13: The solution set of any linear system has the form
{ﬁ+ clﬂl + ...+ ck‘ﬂk‘ | Cl, ...,Ck € R},

where p is any particular solution and k is the number of free variables in the echelon
form of the system.

Proof:

This follows from Lemma 1.1.10 and Lemma 1.1.12. O

Corollary 1.1.14: A linear system of equations has either no solutions, one solution, or

infinitely many solutions.
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1.ii Linear Geometry

Definition 1.2.1: A square matrix is nonsingular if it is the matrix of coefficients of a
homogeneous system with a unique solution. Otherwise (i.e. the homogeneous system has
infinitely many solutions), it is singular .

Definition 1.2.2: The line (in R?), plane (in R3), or k-dimensional linear surface , k-flat

or k-dimensional hyperplane (in R¥) is a set of the form

{@4t,9; + ... + U | tq, .., t,_ 1 € R},

where vy, ..., U, € R™ and k < n. More specifically, it is comprised of the endpoints of these
vectors when their tips are at the origin.

Remark: That the column vectors associated with a parameter ¢, lie entirely within the
line, not just their tips.

Definition 1.2.3: The length of a vector ¥ is defined as

Definition 1.2.4: For any nonzero vector ¥, we normalise ¥ to unit length by carrying
out ¥/|d|.

Definition 1.2.5: The dot product , scalar product or inner product of two vectors u

and v is defined as

—

u-v=u—1lv; +..+u,v,.

Remark: That 77 = v} + ... + 02 = |||

Theorem 1.2.6 (Cauchy-Schwartz inequality): For any 4,7 € R,
i - 9] < |dl [9],
with equality only if there exists k € R such that 4 = kv.
Proof:
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i - 9] < |dl [9]
= 1u-9 < |ul|Y
< ([upl)(@-v) < [af o)
<= 0 < [af? [9]? — (Jul [4])(@ - 9)
L o= S ey | (12 1=
<0< S([al* 3 —2(1ufv) - (|0]a) + [a]* [9]*)
Lo ey a1
<0< 5(|afv — [dla) - (jav - [v]a)
Lo o
<0< 5l(Jalv —[v]a)l
Lo =12 12
= 0 < 2|([als — [31)

which is true because || is always positive, so |*|? is also always positive.
Equality occurs iff (|d|v — |d|d) = 0.
If 3k € R : 4 = k4, then (|4|v — |d|u) = (k|¥|9 — k|d]|9) = 0.
If (|a]v — |d|d) = 0, then
Vi<n:
2 20y — A [r2 2
\/ul + ... +unv, = \/U1 + ...+ vy,

/0,2 2
ui + ...+ u u;
1 n 7

VUit 02y

— % _preRr

Uy

= Jk e R:u=kv.

Hence equality occurs iff 3k € R : 4 = k. O

Theorem 1.2.7 (Triangle inequality): For any 4,9 € R™, |4 + 9| < |d| + |9|, with equality
ift Ik eR:u=kv.

Proof:

Both sides of the inequality are positive, so squaring both sides does not change the
validity of the inequality.
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which is true by the Cauchy-Schwartz inequality (Theorem 1.2.6).
Equality occurs iff 3k € R : 4 = kt, by the Cauchy-Schwartz inequality again. O

Definition 1.2.8: The angle between two vectors 4, v € R™ is defined as

0 = arccos (T> .
|ul|9]

IS
ST

Remark: That this is always defined since, following from the Cauchy-Schwartz inequal-
ity,

Remark: That this always gives an angle in the range [0, 7.

Remark: That this corresponds to our intuition about angles.

Remark: The formula in Definition 1.2.8 follows from the Law of Cosines.
Proof:

Consider two vectors 4,9 € R, and call the angle between them 6. Using the Law of
Cosines on the triangle with sides 4, ¥ and (4 — 9) gives that

|t — )% = |u|? + |9|* — 2|4||9| cos 6.
The left side gives
(uy —v1)* + o+ (u, +v,)° = (U2 — 2ugv, +03) + ... + (U2 — 2u,v,, + v2),
while the right side gives
(w4 ..+ 1)+ (V3 + ... + v2) — 2[d]|D] cos 6.
Combining the two sides and cancelling like terms gives

= —2|u||9| cos 6,
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which simplifies and rearranges to give Definition 1.2.8. O

Remark: That the Law of Cosines is just an extension of Pythagoras’ theorem:

c2=a%2+4+b> — 2abcosh
N ———— —
Pythagoras' theorem

Corollary 1.2.9: Vectors from R™ are orthogonal (perpendicular) iff their dot product
is zero (since arccos0 = §). They are parallel iff the absolute value of their dot product
is the product of their length (since arccos 1 = arccos(—1) = 0).

1.iii Reduced echelon form

Definition 1.3.1: In reduced echelon form , every leading variable has a coefficient of 1,
and is the only nonzero entry in its column.

Remark: That for free variables, there are no restrictions on coefficients, or other entries
in that column.

This is useful because we can just read the solution off.

Ezample: Consider the following system matrix in reduced echelon form:

100 3 |3
010 0 |4
001 1/2|1
The solution set of this system is simply

3 3

4 0

1 +A 1/2 | eR

0 1

To get to reduced echelon form, we use Gauss-Jordan reduction , whereby we first carry out

Gaussian elimination, then scale each row such that the leading variables have coefficients of 1,
then eliminate any non-leading and non-free variables in each row by working upwards.
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Lemma 1.3.2: Elementary row operations are reversible.
Proof:

p; <> p; has the inverse of p; <+ p;. kp; has the inverse of %pi for k # 0. kp; + p; has
the inverse —kp; + p;, where i # j. O

Definition 1.3.3: Matrices that reduce to each other (using elementary row operations)
are interreducible , equivalent with respect to the relationship of row reducibility, or

row equivalent . They are said to be in the same row equivalence class .

Remark: Row equivalence classes are disjoint; any matrix belongs to exactly one row
equivalence class.

Lemma 1.3.4: Between matrices, ‘reduces to’ is an equivalence relation.
Proof:

To be an equivalence relation, ‘reduces to’ must satisfy reflexivity, symmetry and
transitivity.

Reflexivity is trivial since we can reduce A — A through carryig out no operations.
Symmetry follows from Lemma 1.3.2.

The relation is transitive because if we can reduce A — B and B — C, we can carry
out the operations in order to go from A — B — C to reduce A — C. O

Lemma 1.3.5 (Linear combination lemma): A linear combination of linear combinations
is a linear combination.

Proof:

Given the set of linear combinations {cuml + ., x, [1E€{L,...,m},mE Nl},
consider the linear combination of these
dl (Cl’lxl + ...Clmxn) + oo + dm(cm,1$1+-»-0m,nl’n)

= (allcl’lcl:1 + ...+ d1C1,n$n) + ...+ (dmcmylfv1 + ...+ dmcm’nxn)

= (dycy g+ o+ dpCpr)Ty + oo+ (dieyy + o+ dpey, ),

which is a linear combination. O
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Corollary 1.3.6: Where one matrix reduces to another, each row of the second is a linear
combination of the first.

Lemma 1.3.7: In an echelon form matrix, no nonzero row is a linear combination of the
other nonzero rows.

Proof:

Consider any row of the matrix. The leading entry in that row is one, but the entry
in that column in every other row is equal to zero (by the definition of reduced
echelon form), so there is no linear combination of other rows that can make this
Tow. O

Remark: The thing that Gaussian elimination really eliminates is any linear relationships
between rows.

Theorem 1.3.8: Each matrix is row equivalent to a unique (“canonical”) reduced echelon
form matrix.

Proof:

We proceed by induction on the number of columns, n, for a fixed arbitrary number of
rOwWS m.

Let Ae M, .

If A is the zero matrix, then it is in reduced echelon form and is not row-equivalent to
any other matrix (this follows from Corollary 1.3.6). Otherwise, when reduced to reduced-
echelon form, the only nonzero entry must be a 1 in the first row. Regardless, the reduced
echelon form matrix is unique.

Now assume that, for some n > 1, all m x k matrices for kK < n have a unique reduced
echelon form matrix, and consider A € M, .,,.

Suppose that A reduces to two distinct reduced echelon form matrices, B and C. Let A
be the matrix consisting of the first n — 1 columns of A. Any sequence of operations that
reduces A to reduced echelon form must also reduce A to reduced echelon form, and by
the inductive hypothesis, A reduces to a unique reduced echelon form matrix. Therefore,
B and C must differ in the nth column.

We write the linear system with matrix of coefficients A as
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ay 1T + oo + 09 @, = 0;

Uy 1T+ oo+ Cpy Ty, = 0;

the systems with matrices of coefficients B and C' are written similarly. These systems
must all have the same solution sets, since carrying out elementary row operations on
linear systems does not change the solution set. With B and C differing only in the nth
column, suppose they differ in row ¢. We subtract row ¢ of the systems represented by B
and C to get that (c;,, — biyn)a:n = 0. Since ¢; ,, # b; p, T, = 0.

Therefore, z,, is not a free variable, so the nth columns of B and C' must contain the leading
entry of some row, since any column that does not have a leading entry is associated with
a free variable.

Because the first (n — 1) columns of B and C are equal, a leading variable in the nth
column must be in the same position in B and C, and must be equal to 1; therefore, B
and C are equal, so A reduces to a unique reduced echelon form matrix. O

Remark: To decide if two matrices are row-equivalent , we reduce them to reduced
echelon form and see if they are equivalent (this works because equivalence relations are
transitive).

2 Vector spaces

2.i Definition of vector space

Definition 2.1.1: A vector space (over R) consists of a set V along with two operations
‘+” and ‘-’ subject to the condition that, for all 4,9, w € V,r,s € R:
1 V is closed under addition i.e. 4+ v € V

2 addition is commutative i.e. 4+ 7 =7+ U
3 addition is associative
4 there is an additive identity, i.e. 0 e V.VG e V.o +0=170
5 every element of V has an additive inverse, i.e. V6 € V.3 € V.o+w =0
6 V is closed under scalar multiplication i.e. r -9 € V
7 scalar multiplication distributes over addition of scalars, i.e. (r+s)-d=r-v+s-9
8 scalar multiplication distributes over vector addition, i.e. r- (4 + ) =r-d+7r ¥
9 ordinary scalar multiplication associates with scalar multiplication, i.e. (rs)d =17 - (s-
)
101-9=9

Remark: A vector space is space in which linear combinations can be made.

Example: For all n, R™ is a vector space under the natural operations.
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Ezample: For all n, the set of nth degree polynomials, %, = {ay + a1z + ayz® + ... +
a,z" | ag,...,a, € R} is a vector space under the natural operations.

Example: The set of m x n matrices M,,,, is a vector space.

Remark: That 0 is not a vector space because it does not have an additive identity, but
{(8)} is a vector space.

Definition 2.1.2: A vector space with one element is a trivial vector space .

Lemma 2.1.3: In any vector space V, for any ¥ € V and r € R, we have

1.0-5=0
2. (—1-8)+3=0
3.7-0=0

Proof:

For (i), note that ¥ = (1+0) - ¥ =¥+ (0 - ¥). Add to both sides the additive inverse

—

w such that v+ w = 0.

Definition 2.1.4: For any vector space, a subspace is a subset that is itself a vector

space, under the inherited operations.

Remark: Any vector space has a trivial subspace {6}

Remark: Any vector space has itself for a subspace.

Definition 2.1.5: A subspace that it not the entire space is a proper subset .
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Lemma 2.1.6: For a nonempty subset .S of a vector space, under the inherited operations
the following are equivalent statements

1. S is a subspace of that vector space

2. S is closed under linear combinations of pairs of vectors

3. S is closed under linear combinations of any number of vectors

Remark: It is often easier to verify closure if the solution set is parametrised, e.g. rather

“3 3 -3
than {(y) |2x—y+z:0},use {y(l) —i—z(o) ]y,zeR}.
z 0 1

Definition 2.1.7: The span (or linear closure ) of a nonempty subset S of a vector

space is the set of all linear combinations of vectors from S. [S] = span(S) = {¢;5; + ... +
CnnlCly s Cp € R, 81, ..., 5, € ST

Definition 2.1.8: [(] = {6}

Lemma 2.1.9: In a vector space, the span of any subset is a subspace.
Proof:
If the subset S is empty, its span is the trivial subspace by definition. Otherwise, for

two elements of [S], ¥ =¢,8; + ... + ¢,$,,, W = d15; + ... + d,,8,,, where §, € S and
p, 7 € R,
+r-w=(pe;$; + ... + pc,s,) + (rdy8; + ... +rd,,5,)

= (pcy +rdy)s; + ... + (pc,, +rd,,)s,

<

p .

which is a linear combination of elements of S and so is a member of [S], hence [S]
is closed under linear combinations of pairs of elements; by Lemma 2.1.6, [S] is a
subspace. O

Remark: To express a subspace as a span, parametrise then the span is of the set
containing the vector coefficients of each parameter.

Remark: Spans are not unique.
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2.ii Linear Independence

Definition 2.2.1: In any vector space, a set of vectors is linearly independent if none
of its elements is a linear combination of the others from the set. Otherwise the set
is linearly dependent .

Definition 2.2.2: If a set is linearly dependent, its vectors are in a linear relationship .

Lemma 2.2.3: A subset S of a vector space is linearly independent iff among its elements
the only linear relationship ¢;s; + ... + ¢, s,, = 0 is the trivial one, ¢, = 0.

Proof:

If S is linearly independent, there is no vector s € S that can be expressed as a
linear combination of other elements of .S, so there is no linear relationship between
elements of S with non-zero coefficients, i.e. the only linear relationship is the trivial
one.

If S is linearly dependent, there exists a vector s € S that can be represented as a
linear combination of other elements of S, so there is a linear relationship among
the elements of S with at least one non-zero coefficient, being that of s. Hence by
contraposition, if the only linear relationship among elements of S is the trivial one,
S is linearly independent. O

Lemma 2.2.4: Suppose V is a vector space, S is a subset of that space, and v € V, then
[SU{v}] =[S] <= v €[S].
Proof:

=>: Suppose U ¢ [S], then [S U {©}] # [S] since ¥ € [S U {#}]; the implication follows
from contraposition.

<=: Suppose ¥ € [S], then ¥ = ¢;8; + ... + ¢,8,, forcy, ..., c
for any w € [S U {v}],

eR,s,,...,5, € S. Then

n

= (dl + Cldn1)§1 + ...+ (d, +¢,d,1)S, by expansion of 7,

so W € [S]. Therefore, [S U {v}] C [S]. Note also that clearly [S] C [S U{9}], so by
double inclusion [S U {v}] = [S]. O

Corollary 2.2.5: For v € S, [S] =[S\ {¢}] iff ¥ is dependent on other vectors in S.
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Corollary 2.2.6: A set S is linearly independent iff for any ¥ € S, [S'\ {¥}] C [S].

Lemma 2.2.7: Suppose that S is linearly independent and that ¥ ¢ S, then S U {9} is
linearly independent iff ¥ ¢ [S].

Proof:

Suppose that ¥ € [S], so ¥ = ¢;§; + ... + ¢, 8, for §1,...,§,, € S. Since v ¢ S, it is not
equal to any of the §;s so this is a nontrivial linear dependence among elements of
S U {v}. Therefore, s U {9} is not linearly independent.

Now suppose that S U {9} is linearly dependent, so there exists a nontrivial combi-
nation 0 = ¢;8; + ... + ¢, 5, + Cp41U. By assumption, S is linear independent, so

Cpy1 7 0. Therefore, we can rearrange the equation to find that v = (CC11 ) 5+ ...+
n+
)gn s0 @ € [S].
Therefore we have that S U {9} is linearly dependent iff ¥ € [S], so S U {9} is linear
independent iff ¥ ¢ [S]. O

Corollary 2.2.8: In a vector space, any finite set has a linearly independent subset with
the same span.

Proof:

For a finite set S :={sy,...,8,}, if S is linearly independent then the statement
is trivially true as S C S. Note that if S is a singleton set, it is trivially linearly
independent.

Otherwise, there exists an §; which can be expressed as a linear combination of the
other elements of S; by Corollary 2.2.5, 8" := S\ {8;} has the same span as S. |S"| <
|S|, and since S’ is finite we can keep removing dependent elements until we either
reach a nontrivial independent set with the same span, or we reach a singleton set,
which is trivially independent. O

Corollary 2.2.9: A subset S = {5y, ...,§,} is linearly dependent iff some s; € S can be
represented as a linear combination of other elements in S listed before it.

Proof:

Let Sy ={},S ={5:},S, = {51,5},.... Then if § is linearly dependent, there
exists a first 4 > 1 such that S;_; U {5;} is linearly dependent, i.e. 5; € [S;_;]. O
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Lemma 2.2.10: Any subset of a linearly independent set is also linearly independent.
Any superset of a linearly dependent set is linearly dependent.

2.iii Basis and dimension

Definition 2.3.1: A basis for a vector space is a sequence of vectors that is linearly
independent and that spans the space. Denoted (5, 35, -..).

Definition 2.3.2: For any R”,

1\ /o 0
< ol |1 0 >
Ep = N IS A (R
o) \o 1

is the standard basis or natural basis . We denote these vectors €, ..., €,,. (Sometimes the
vectors in e are denoted 7, 7, k.)

Theorem 2.3.3: In any vector space, a subset is a basis iff each vector in the space can
be expressed as a linear combination of elements of the subset in exactly one way.

Proof:

A sequence is a basis iff its elements form a spanning subset of the space, and
is linearly independent. A subset is spanning iff each vector in the space can be
expressed as a linear combination of elements in the subset, so we need only show
that a spanning subset is linearly independent iff every vector in the space has a
unique expression as a linear combination of elements of the subset.

Consider two such expressions of a vector v, ¥ = ¢; Bl + ...+ cngn and U = d; 51 +
.+ dngn for a subset § := { Bl, e Bn} These are equal by transitivity of equality,
so we can subtract them to get that (¢; —dy)B, + ... + (¢, —d,,)B, = 0. The ¢;s
equal the d;s iff ¢; —d; = 0 for 1 <9 < n, which holds iff S is linearly independent,
since the only linear dependence amongst its elements is the trivial one. O
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Definition 2.3.4: In a vector space with bases B the
representation of ¥ with respect to B is the column vector of the coefficients used to

express ¥ as a linear combination of the bases vectors:

€
Repp(7) =
CTL
B
where B = <517 ,Bn> and U = clgl + ..+ cngn.

qs---, ¢, are the coordinates of ¥ with respect to ¥ .

Remark: Any @ € R" has Rep, (@) = .

Lemma 2.3.5: If B is an n-element basis of a vector space V, then for any set of vectors

{Vy, .., 0 },
1%y + ... + a¥; = Oy, <= a;Repg(3;) + ... + a,Repg (7)) = Ogn.
Proof:

Take a basis B = (51, e Bn> and suppose Repp ;) is the ith column of a matrix C €
Mp, for 1 <7 <k such that v, =¢; 16, + ... + ¢, 105, etc.

Then we can substitute these into a;%, + ... + a, 7, = 0}, to give

Op =a; (01,1r31 +...t Cn,lﬁn) + .t ay (01,1351 +...+ Cn,k/Bn)
= (alcl?l + ...+ akclyk)ﬁl + ...+ (alcn71 + ... + akcn,k:)IBk:'
Because elements of bases are linearly independent, this only holds if ay¢; ; + ... +

apCip = ... = 01Cp 1 + ... + ayc, ,, = 0. This gives us a linear system which we can
re-express with column vectors, giving

R C11 C1,k
OR" =a1 +...+ak
cn,l Cn,k
= a;Repp(9;) + ... + a,Repg(Uy).
Note that not only does the relationship hold, but the coefficients a, are the same.

|

Definition 2.3.6: A vector space is finite-dimensional if it has a basis with only finitely

many vectors.
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Theorem 2.3.7: In any finite-dimensional vector space, all bases have the same number
of elements.

Proof:

Consider some finite-dimensional vector space; by definition, it has a finite basis. Pick
one finite basis B = (f,, ..., §,,) of minimal size, and, for the sake of contradiction,
take any other basis D =)éy,...,d,,), with m # n, noting that m > n since B is

minimal.

Assume that the elements of D are unique (otherwise it would not be a basis), then
the only linear relationship amongst the d,s must be the trivial one. By Lemma 2.3.5,
the only linear relationship amongst the representations of the d,s with respect to B
is the trivial one.

A linear relationship amongst the representations of the J,s with respect to B can be
represented by a homogeneous system of n linear equations, with m > n unknowns.
Since there are more unknowns than equations, and the system is homogeneous,
there are infinitely many solutions and so there must be more than just the trivial
linear relationship among the d,s. Therefore, the §,s are not linearly independent, so
D is not a basis; this is a contradiction, so all bases of ¥ must be the same size. O

Definition 2.3.8: The dimension of a vector space is the number of vectors in any of
its bases.

Corollary 2.3.9: No linearly independent set can have a size greater than the dimension
of the enclosing space, assuming a finite-dimensional space.

Corollary 2.3.10: Any linearly independent set can be expanded to make a basis.
Proof:
Take a linearly independent set S of a vector space V.

If S is not already a basis for V, then it must not span the space. Therefore we can
add a vector that is not in [S] to S, and retain linear independence by Lemma 2.2.7.
Keep adding until the resulting set does span the space, which will occur in a finite
number of steps by Corollary 2.3.9. 0

Corollary 2.3.11: Any spanning set can be shrunk to a basis.
Proof:
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Take a spanning set S. If S = () then it is already a basis (and the enclosing space
must be trivial). If S = {6} then it can be shrunk to the empty basis without

changing its span.

Otherwise, 35 € S s.t. § # 0 and we can form a basis B := (3). If [B] = [S] then we
are done. Otherwise, 3t € [S] s.t. £ ¢ [B], so we can append f to B. By Lemma 2.2.7,
B is still linearly independent. We can then check if [B] = [S], and keep repeating
this process until the spans are equal, which must happen in a finite number of
steps. |

Corollary 2.3.12: In an n-dimensional space, a set composed of n vectors is linearly
independent iff it spans the space.

Proof:

A set composed of n vectors is linearly independent iff it is a basis: the “if” direction
is clear, and the other directions holds because any linearly independent set can be
expanded to a basis, but it already has n elements so must already be a basis.

A subset of n vectors spans the space iff it is a basis: again the “if” direction is clear,
and the other direction holds because any spanning set can be shrunk to a basis,
but it already has n elements so must already be a basis. O

Definition 2.3.13: The row space of a matrix is the span of the set of its rows. The
row rank is the dimension of this space, the number of linearly independent rows.

Lemma 2.3.14: If two matrices A and B are related by a row operation, p; <> p;, kp;
or kp; + p; for i # j, then their row spaces are equal.

Proof:

By Corollary 1.3.6, each row of B is a linear combination of the rows of A; that is,
each row of B is in the rowspace of A. It follows by the Linear Combination Lemma
that Rowspace(B) C Rowspace(A), since each element of the rowspace of B is a
linear combination of the rows of B, so is a linear combination of a linear combination
of the rows of A, i.e. just a linear combination of the rows of A. Because elementary
row operations are reversible (by Lemma 1.3.2), the same argument can be applied
to show that Rowspace(B) 2 Rowspace(A); by double-inclusion, the rowspaces are
equal. O
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Corollary 2.3.15: Row-equivalent matrices have the same row space and therefore the
same row rank.

Lemma 2.3.16: The nonzero rows of an echelon form matrix make up a linearly
independent set.

Proof:

This is a restatement of Lemma 1.3.7 using new terminology. O

Definition 2.3.17: The column space of a matrix is the span of the set of its columns.
The column rank is the dimension of the column space, the number of linearly independent
columns.

Definition 2.3.18: The transpose of a matrix is the result of interchanging its rows and
columns, so that the column j of the matrix A is row j of AT and vice-versa.

Lemma 2.3.19: Row operations do not change the column rank.
Proof:

By Lemma 1.1.4, row operations do not change the solution space of a system,
so they must preserve linear relationships among columns. Therefore, they do not
change the number of linearly independent columns, so they preserve column rank.[]

Remark: Unlike the row space, the column space might change under row operations;
it is only the column rank that is invariant under row operations.

Theorem 2.3.20: For any matrix, the row rank and column rank are equal.
Proof:

Any matrix A is row-equivalent to a reduced echelon form matrix, with the same
row and column rank as A by Lemmas 2.3.15 and 2.3.19. The row rank of A is the
number of nonzero rows in the reduced echelon form matrix, which is equal to the
number of leading entries in the reduced echelon form matrix; the column rank of A
is also equal to the number of leading entries, since the columns containing leading
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entries form a subset of the standard basis, so all other columns can be expressed as
a linear combination of the rows containing leading entries. O

Definition 2.3.21: The rank of a matrix is its row rank or column rank.

Theorem 2.3.22: For linear systems with n unknowns and with matrix of coefficients A,
the rank of A is r iff the vector space of solutions of the associated homogeneous system
has dimension (n —r).

Proof:

The rank of A is r iff the reduced echelon form matrix of A has r leading variables.
There must be (n —r) free variables in the reduced echelon form matrix, so the
solution space of the associated homogeneous system has dimension (n — r). O

Corollary 2.3.23: Where the matrix A is n x n, the following statements are equivalent:
1. the rank of Aisn

A is nonsingular

the rows of A form a linearly independent set

the columns of A form a linearly independent set

Cr W

any linear system whose matrix of coefficients is A has one and only one solution.
Proof:
TODO O

Definition 2.3.24: Where W, ..., W, are subspaces of a vector space, their sum is the
span of their union: W} + ... + W, = [W; U ... U W,].

Definition 2.3.25: The concatenation of the sequences By, ..., B, adjoins them into a
single sequence.

BIAB2A"'ABIC = <B1,1’ sy Bl,nﬂ T /Bk,la sy 5k,nk>

Definition 2.3.26: A collection of subspaces {W], ..., W} is independent if no nonzero
vector from any W, is a linear combination of vectors from the other subspaces.
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Lemma 2.3.27: let V be a vector space that is the sum of some of its subspaces,

V=W +..4+W,. Let By,..., B, be bases for these subspaces. Then the following are

equivalent:

1. The expression of any ¥ € V' as a combination ¥ = W, ..., w; where w,; € W, is unique;

2. The concatenation B, ...” B, is a basis for V;

3. Among nonzero vectors from different W,, every linear relationship is trivial, i.e. the
W;s are independent.

Proof: TODO ? possibly out of scope |

Definition 2.3.28: A vector space V is the direct sum (or internal direct sum ) of its
subspaces W, ..., W, if V.=W, + ... + W, and the collection {W], ..., W, } is independent.
We write V=W, e W, & ..o W,.

Corollary 2.3.29: The dimension of a direct sum is the sum of the dimensions of its

summands.
Proof:

In Lemma 2.3.27, the number of vectors in the concatenated basis is the same as the
sum of the number of vectors in each sub-basis. O

Definition 2.3.30: When a vector space is the direct sum of two of its subspaces, they
are complements .

Ezxample: In R?, the z- and y-axes are complements.

Lemma 2.3.31: A vector space is the direct sum of two of its subspaces W}, W, iff V =
W, + W, and W, N W, = {6} i.e. their intersection is trivial.

Proof:

ItV =W, @ W,, then by definition of direct sum, V = W, 4+ Wj; furthermore, since
W, and W, are independent, the linear combination ¢ = v for v € W; N W, can only
have the trivial solution ¥ = 0 if we want a member of W, on the left side and a
member of W, on the right, w.l.o.g.

Conversely, if W, NW, then if we express w, € W, as a linear combination of
Wy, oy Wy, € Wo, wy =Wy + ... + ¢, W,, then w, must also be in W,, as linear
combinations of elements of a vector space are also in that vector space. But the
intersection of W, and W, is trivial, so W, and W, satisfy the definition of indepen-
dence; since they sum to V, they form a direct sum of V. O
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3 Maps between spaces

3.i Isomorphisms

Definition 3.1.1: An isomorphism between two vector spaces V and W is a map f:
V — W such that

1. f is a bijection/correspondence;

2. f preserves structure : if v;,v5 € V then

f(og +vg) = f(vg) + fvg
and if v € V and r € R then
f(rv) =rf(v).

(We write V = W, read “V is isomorphic to W”, when such a map exists.)

To verify that f: V — W is an isomorphism, show that:

o f is injective/one-to-one, i.e. f(¥;) = f(¥)y < Uy = Uy V1,045 € V;
f is surjective/onto, i.e. Vo € W3 € V : f(v) = w;

o f preserves addition, i.e. f(U; +Uy) = f(Vy) + f(¥y) VV;,05 € V;

—

o f preserves scalar multiplication, i.e. f(r-9)=r- f(¥) Vi e V,r € R.

|
S

Remark: Structure preservation is special. Many bijections do not preserve addition and
scalar multiplication.

Definition 3.1.2: An automorphism is an isomorphism of a space with itself.

Example: A dilation map d, : R? — R? that multiplies all vectors by a nonzero scalar s
is an automorphism of R2.

Example: A rotation or turning map t, that rotates all vectors through an angle 6 is an
automorphism.

Remark: Automorphisms are relevant to study, despite seeming trivial, because they
formalise the intuitive notion that space near the z-axis is like space near the y-axis.

Lemma 3.1.3: An isomorphism maps the zero vector to the zero vector.

Proof: Where f:V — W is an isomorphism, fix some ¥ € V. Then

F(Oy) = £(0-8) = 0- f(3) = O
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Lemma 3.1.4: For any map f : V — W between vector spaces, the following statements
are equivalent:
(i) f preserves structure
(ii) f preserves linear combinations of two vectors
(iii) f preserves linear combinations of any finite number of vectors

Proof:
TODO (in Hefferon) O

Lemma 3.1.5: The inverse of an isomorphism is also an isomorphism.
Proof:

Suppose that V = W by f: V — W. Because isomorphisms are bijections, f has an
inverse f~1: W — V.

Suppose that w,,w, € W. Because it is an isomorphism, f is surjective and 3v;, v, €
Vit = f(Uy), Wy = f(U;). Then

= ¢ - f7HWy) + ¢y - fTH(Wy) since Wy = f(¥;) and Wy = f(y).

Therefore f~! preserves structure and hence satisfies the necessary conditions to be
an isomorphism.

O

Theorem 3.1.6: Isomorphism is an equivalence relation between vector spaces.
Proof:

Isomorphism is reflexive, since the identity function is an isomorphism, since it is
clearly a bijection and preserves structure:

id(leUl + 6262) = Cl/l_jl + 02172 = Cl ld('l_jl) + C2 ld(’l_l)z)
Symmetry holds by Lemma 3.1.5.

For transitivity, suppose that V=W and W =2 U, and let f: V > W and g: W —
U be isomorphisms. Then g o f is bijective, and structure preserving:
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|

Lemma 3.1.7: If spaces are isomorphic then they have the same dimension.

Proof:

TODO (in Hefferon) O
Lemma 3.1.8: If spaces have the same dimension then they are isomorphic.

Proof:

TODO (in Hefferon) O
Theorem 3.1.9: Vector spaces are isomorphic iff they have the same dimension.

Proof:

The proof follows from Lemma 3.1.7 and Lemma 3.1.8. O

Corollary 3.1.10: Every finite-dimensional vector space is isomorphic to exactly one of
the R™.

Thus the real space R™ form a set of canonical representatives of the isomorphism classes.

3.ii Homomorphisms

Definition 3.2.1: A homomorphism or linear map between vector spaces is a function

h:V — W that preserves addition and scalar multiplication. Such a function is said to
satisfy linearity .

Lemma 3.2.2: A linear map maps the zero vector to the zero vector.
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Proof:

The proof is the same as the proof to Lemma 3.1.3. O

Lemma 3.2.3: The following statements are equivalent for any map f: V — W between
vector spaces:
1. f is a homomorphism;

2. fley Uy + g Ug) =¢q - f(U1) + ¢y - f(¥);
3. fleg Uy +...4¢, 9,) =c f(¥;) + ... +¢,f(V,).

Proof:
TODO (in Hefferon) O

x
Ezample: The inclusion map ¢ : R? — R3?; (Z) — (y) is a homomorphism.
0

Ezample: The derivative is a homomorphism on polynomial spaces (and in general).

Definition 3.2.4: The trace of a square matrix is the sum down the upper-left to bottom-
right diagonal. So Tr: My, , — R is:

Remark: Tr is a linear map.

Theorem 3.2.5: A homomorphism is determined by its action on a basis: if V is a
vector space basis <51, ey Bn>, if W is a vector space, and if W, ..., @, € W (not necessarily
distinct), then there exists a homomorphism from V' to W sending each BZ to w;, and that
homomorphism is unique.

Proof:
TODO (in Hefferon) O

Definition 3.2.6: Let V and W be vector spaces and let B = (Bl, . §n> be a basis for V.
A function defined on that basis f : B — W is extended linearly to a function f VoW
if, forall € Vst. =c,- B, + ... +¢, - B, the action of the map is f(T) = ¢; - f(ﬁl) +
ot cnf<5n).
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Ezample (Derivation of t, (rotation)):

() (280 (2)

()0 (1)
e af(§) )

=z- (cosﬁ) +y - (—sinf,cosh)

Extending linearly:

sin 0
_ (xcosf —ysinb
- \zsinf+ycosh)’

Definition 3.2.7: A linear map from a space into itself t:V —V is a
linear transformation .

Lemma 3.2.8: For vector spaces V and W, the set of linear functions from V to W is
itself a vector space, a subspace of the space of all functions from V to W. We denote the
space of linear maps from V to W by £(V,W).

Alternatively: a linear combination of homomorphisms is also a homomorphism.
Proof:
TODO (in Hefferon) O

Lemma 3.2.9: Under a homomorphism, the image of any subspace of the domain is a
subspace of the codomain. In particular, the image of the entire space, the range of the
homomorphism, is a subspace of the codomain.

That is, given vector spaces V,W and a homomorphism h:V — W, W’ := {h(v) : v €
V'} CW VYV’ CV where V' and W’ are subspaces of V' and W respectively.

Proof:
TODO (in Hefferon) O

Definition 3.2.10: The range space of a homomorphism h: V — W is
R(h) ={h(@) | v €V},

sometimes denoted A(V'). The dimension of the range space is the map’s rank .
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Definition 3.2.11: For any function h: V — W, the set of elements of V' that map to
w € W is the inverse image h™'(w) = {3 € V | h(¥) = w}.

Lemma 3.2.12: For any homomorphism the inverse image of a subspace of the range is
a subspace of the domain. In particular, the inverse image of the trivial subspace of the
range is a subspace of the domain.

Proof:
TODO (in Hefferon) O

Definition 3.2.13: The null space of kernel of a linear map h: V — W is the inverse

image of Oy

N(h) =h7 (O ) = {5 €V | h(®) =0y }.
Definition 3.2.14: The dimension of the null space is the map’s nullity .

Theorem 3.2.15 (rank-nullity theorem): Given a linear map h: V — W,
Dim(V') = Dim(R(h)) + Dim(N (h)).
Proof:
TODO (in Hefferon) O

Lemma 3.2.16: Under a linear map, the image of a linearly dependent set is linearly
dependent.

Proof:
Suppose that ¢,9, + ... + ¢, 3, = 0, with some ¢; nonzero. Apply h to both sides:

h(cy9; + ... +¢,9,,) = ¢, h(V;) + ... + ¢, h(Y,,) and h(ﬁv) = 0yy. We still have some
¢; nonzero, so the set of the h(7;)s is linearly dependent. O

Theorem 3.2.17: Where V is an n-dimensional vector space, these are equivalent
statements:

(i) h is one-to-one/injective;

(ii) h has an inverse from its range to its domain that is a linear map;
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(iii) N (h) = {0}, that is, nullity(h) = 0;
(iv) rank(h) =n ;
(v) if (B, ..., B,) is a basis for V then (h(ﬁl), - h(3n> is a basis for R(h).

Proof:
TODO (in Hefferon) O

Remark: A one-to-one homomorphism is an isomorphism.

3.iii Computing linear maps

Definition 3.3.1: Suppose that V and W are vector space of dimensions n and m with
bases B and D, and that h: V — W is a linear map. If

. hy 4 R hy
RePD(h(,B1)> = : oo = s RepD(h(ﬂn)) = :
h’m,l hm,n
D D
then
hyq .. hl,n
RGPB,D(h) = .o
hm,n
B,D

is the matrix representation of A with respect to B, D.

Theorem 3.3.2: Assume that V and W are vector spaces of dimensions n and m, and
that h: V — W is a linear map. If h is represented by

RepB,D(h) =

and ¥ is represented by

Reppm) =

then the representation of the image of ¥ is
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cihyg+ o+ chy,

Repp(h(V)) = .
clhm1 + ...+ cnhm’n

Definition 3.3.3: The matrix-vector product of an m X n matrix and an n X 1 vector is

ar1 0 Qg U a1V + o+ Ay 0,

L T Ve Uy, Oy 1V1 + ...+ [

Theorem 3.3.4: Any matrix represents a homomorphism between vector spaces of
appropriate dimensions, with respect to any pair of bases.

Proof:
TODO (in Hefferon) O

Theorem 3.3.5: The rank of a matrix equals the rank of any map that it represents.
Proof:
TODO (in Hefferon) O

Corollary 3.3.6: Let h be a linear map resented by a matrix H. Then h is onto/surjective
iff the rank of H equals the number of its rows, and h is one-to-one/injective iff the rank
of H equals the number of its columns.

Proof:
TODO (in Hefferon) O

Definition 3.3.7: A linear map that is one-to-one and onto is nonsingular , otherwise it
is singular . That is, a linear map is nonsingular iff it is an isomorphism.

Lemma 3.3.8: A nonsingular map is represented by a square matrix. A square matrix
represents nonsingular maps iff it is a nonsingular matrix. Thus, a matrix represents an
isomorphism iff it is nonsingular.
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Proof:

Assume that the homomorphism h : V' — W is nonsingular. Thus by Corollary 3.3.6,
for any matrix H representing h, H has full column rank and full row rank. Since
a matrix’s row rank is equal to its column rank, the number of rows is equal to
the number of columns and so H is a square matrix; since it has full rank, it is
nonsingular.

Conversely, assume that H is a square nonsingular n X n matrix. To be nonsingular,
it must have full row and column rank, which is true iff h is an isomorphism, by
Lemma 3.1.7, since the domain and codomain have the same dimension. O

3.iii.i Computing range and null spaces
TODO - rewatch end of lecture

3.iv Matrix operations

Theorem 3.4.1: Let h,g : V — W be linear maps represented with respect to bases B, D
by the matrices H and G and let r be a scalar. Then with respect to B, D the linear map
r-h:V — W is represented by rH and the map h + g : V — W is represented by H + G.

or Zor0 or

Definition 3.4.2: A zero matrix has all entries zero. We write Z,,,, nxm

just 0.

Lemma 3.4.3: The composition of linear maps is linear.
Proof:
Let h: V — W and g : W — U be linear.

—

(goh)(cy Dy +co - Uy) = g(h(cy - Uy + ¢y - Uy)

hence g o h is linear. |

Theorem 3.4.4: A composition of linear maps is represented by the matrix product of
the representations.

Proof:
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TODO (in Hefferon) O

( TODO : arrow diagrams)

Remark: Matrix multiplication is not commutative in general.

Theorem 3.4.5: If F',G, H are matrices, and the matrix products are defined, then the
product is associate and distributes over matrix addition.

Proof:

Associativity holds because matrix multiplication represents function composition,
which is associative.

Distributivity is similar, coming from the linearity of linear maps. O

Lemma 3.4.6: In a product of two matrices G and H, the columns of GH are formed
by taking G times the columns of H and the rows of GH are formed by taking the rows
of G times H.

Definition 3.4.7: A matrix with all zeros except for a 1 in the 4, jth entry is an ¢, j-
unit matrix or matrix unit .

Left-multiplying the 4, j-unit matrix copies row j of the multiplicand into row ¢ of the
result; right-multiplying by the 4, j-unit copies column ¢ of the multiplicand into column
j of the result.

Scaling a unit matrix scales the result.

Definition 3.4.8: The main diagonal or leading diagonal or principle diagonal goes from

the upper left to lower right.

Definition 3.4.9: An identity matrix is square and every entry is 0 except for 1s in the

leading diagonal.

VAeR™" [ A= AL A.

Definition 3.4.10: A diagonal matrix is square and has Os off of the main diagonal.
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Definition 3.4.11: A permutation matrix is square and is all Os except for a single 1 in

each row and column.

Left-multiplying by a permutation matrix permutes rows, right-multiplying permutes
columns.

Definition 3.4.12: The elementary reduction matrices result from applying a single

Gaussian operation to an identity matrix.
. kp;
(i) T — M, (k) for k # 0 (think Multiply);
sy PP s

(ii) 1 — F, ; for i # j (think Permute);

(iii) [ ot £ 7 (thi ?
I —— G, ;(k) for i # j (think Carry over?)
Lemma 3.4.13: Matrix multiplication can do Gaussian reduction.

Proof:

Clear - just left-multiply by the relevant elementary reduction matrix. O

Corollary 3.4.14: For any matrix H there are elementary reduction matrices Ry, ..., R,
such that R, - R,_,---R; - H is in reduced echelon form.

Definition 3.4.15: If we have 7o =id, we say that ¢ is the right-inverse of m, and
likewise 7 is the left-inverse of ¢.

Definition 3.4.16: A function f has a two-sided inverse g if g is a right-inverse and left-

inverse. In this case, the inverse in unique.
Note: this means that f is a bijection.

Note: recall that if a linear map has a two-sided inverse, the inverse is also a linear map.

Definition 3.4.17: A matrix G is a left-inverse matrix of the matrix H if GH is the
identity matrix. It is a right inverse if HG is the identity matrix. A matrix H with a two-

sided inverse is an invertible matrix . The two-sided inverse is denoted H~!.

Lemma 3.4.18: If a matrix has both a left inverse and right inverse then the two are
equal.
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Proof: See Theorem 3.4.19. O

Theorem 3.4.19: A matrix is invertible iff it is nonsingular.
Proof:

Given a matrix H, fix spaces of appropriate dimension for the domain and codomain
and fix bases for these spaces. With respect to these bases, H represents a map
h. The statements are true about the map and therefore they are true about the
matrix.

This also proves Lemma 3.4.18. a

Lemma 3.4.20: A product of invertible matrices is invertible. That is, if G, H are
invertible and GH is defined then GH is invertible and (GH) ' = H1G™!.

Lemma 3.4.21: A matrix H is invertible iff it can be written as the product of elementary
reduction matrices. We can compute the inverse by applying to the identity matrix the
same row steps, in the same order, that Gauss-Jordan reduce H.

Corollary 3.4.22: The inverse of a 2 X 2 matrix exists and equals

ab\ ' 1 (d —b
cd ad—bec\—c a

iff ad — be.
Proof:

1 d —b ab) 1 ad —bc db—bd
ad —bc\—c a cd]  ad—bc\—ac+ac —cb+ ad
— 10 .
—\0 1)’
ab 1 d —b\) 1 ad —bc —ab + ba
cd/\ad—bc\—c a " ad—be \cd —dec —bc+da

(%)

35 of 69



MT2025 Linear Algebra Lecture Notes | https://www.sophia.fish/lecture-notes/

3.v Change of basis

Definition 3.5.1: The change in basis matrix for bases B, D C V is the representation

of the identity map id : V' — V with respect to those bases.

Repp p(id) = RepD(ﬁl) RepD(Bn)

Lemma 3.5.2: Repp(¥) = Repg p(id) - Repp(v).
Proof:
Trivial. O

Lemma 3.5.3: A matrix changes base iff it is nonsingular.
Proof:
TODO : in Hefferon ]

Corollary 3.5.4: A matrix is nonsingular iff it represents the identity map with respect
to some pair of bases.

Theorem 3.5.5: To convert from the matrix H representing a map h with respect to
B, D to the matrix H representing h w.r.t B, f),

H= Repg p(h) = Repp, p(id) - H - Repp p(id)
= RepD’ﬁ(id) Repp p(id) - RepB’B(id).
Proof:
TODO by arrow diagram |

Definition 3.5.6: Same-sized matrices H and H are matrix equivalent if there are

nonsingular matrices P, @ s.t. H = PHQ, that is, we can change bases to get H from H.
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Corollary 3.5.7: Matrix-equivalent matrices represent the same map, with respect to
appropriate pairs of bases.

Theorem 3.5.8: Matrix equivalence is an equivalence relation.
Proof:
Matrix equivalence is transitive, since H = TH]I.

Matrix equivalence is symmetric, since if H = PHQ for nonsingular P,Q, then
P'HQ'=P'PHQQ' = H.

Matrix equivalence is transitive, since if B = PAQ and C = RBS for nonsingular
P,Q,R,S, then C = (RP)A(QS), with (RP) and (QS) nonsingular since the
product of nonsingular matrices is nonsingular. O

Theorem 3.5.9: Any m X n matrix of rank k is matrix equivalent to the m x n matrix
that is all zeros except that the first k diagonal entries are 1.

Definition 3.5.10: This is a block partial-identity form , so called because you

have an identity matrix in the top left of the matrix.

Remark: Block partial-identity matrices are projection maps between the same bases.

Remark: All matrices are projection maps with respect to some bases.

Corollary 3.5.11: Matrix equivalence classes are characterised by rank: two same-sized
matrices are matrix equivalent iff they have the same rank.

Proof: Two same-sized matrices with the same rank are equivalent to the same block
partial-identity matrix. O
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3.vi Projection

Definition 3.6.1: The orthogonal projection of a vector ¥ into the line spanned by a

nonzero vector s is

<
Wy
®

projg (V) = =— -

Wy
i

Remark:

projiz(9) is a scalar multiple of § whose tip lies directly “underneath” the tip of ¥, where
the “up” direction is the vector orthogonal to § that intersects ¥; it is orthogonal to

(17 — Proj (U))

Remark:

Another way of thinking about projection is that projyg (¥) is the “shadow” of ¥ on §,
when a light source is shone orthogonally on to s.

Remark:
We can derive the projection formula from the above remarks.

Projj (¥) = ¢8 where ¢ € R. Then by Pythagoras, |5|? = |¢3|? + |7 — c3|%.

Hence
U-0=c?(5-8)+0- -9+ c?(5-3) —2¢(v-3)
= 2¢(¥- 8) = 2¢2(3 - 3)
v-8
— C= .
EE
Therefore proj (V) = g—g - 8.

TODO : picture

Definition 3.6.2: Vectors 9;,...0, € R” are mutually orthogonal when any two are
orthogonal: Vi,j € {1,...,k},i # j,v; - v; = 0.

Theorem 3.6.3: If the vectors in a set {vy,...,7,} C R™ are mutually orthogonal and
nonzero then that set is linearly independent.
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Proof:

Consider a linear relation among the ;s: 0= ¢,¥; + ... + ¢, ¥),. Taking the dot
product of any ¥; with both sides of the equation gives ¥; - (¢;9; + ... + ¢, U,) = U, -
0 = 0. Since, for i # J, U; - ¥; = 0 due to orthogonality, the left side reduces to ¢;(v; -
v;), so ¢;(V; - U;) = 0. Since v, - ¥; # 0, it must be that ¢, = 0. This holds for all the ¢,
s, so the only linear relationship among the ;s is the trivial one, so the set is linearly
independent. O

Corollary 3.6.4: In a k-dimensional vector space, if the vectors in a size k set are
mutually orthogonal and nonzero then that set is a basis for the space.

Proof:

Any linearly independent subset of size k in a k dimensional space is a basis. O

Definition 3.6.5: An orthogonal basis for a vector space is a basis of mutually orthogonal

vectors.

Theorem 3.6.6 (Gram-Schmidt process): If (3, ..., 5,) is a basis for a subspace of R™
then the vectors

form an orthogonal basis for the same subspace.
Proof:

We show by induction by each k; is nonzero, is in the span of <Bl, e
orthogonal to all the previous Ks, and thus by Corollary 3.6.4, (K4, ..., Ky
for the same subspace for which (5, ..., B;) is.

B.), and is
) is a basis

Fori=1, K, = 51, so is clearly nonzero, is vacuously orthogonal to all previous Ks,
and is clearly in the span of (f;).

Now assume that x,; is nonzero, orthogonal to the previous s and is in the span of
(B1, .-, B;) for all j less than some fixed i > 1.
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Then x; = ﬁ Z 1 proj ;] (ﬁ ) This sum can be iteratively reduced to be in terms

of the ﬁs SO K; # 0 or else there would be a nontrivial linear dependence among the
Bs, which would be a contradiction as we know them to be linearly independent as
they are a basis. (Note also that the coefficients of the Bs must be nonzero as, by
the inductive hypothesis, all previous Ks are nonzero.)

Because k; is a linear combination of fs, it is in the span of (Bl, ﬁl +1)- Also, it is
orthogonal to all the previous Ks: for all 1 < j < i,

1

IzEj : I%Z /% (/gz ipro-]["ﬂ ( Z))

=1

i—1
=Rj- (ﬁz‘ — Proj[z | (ﬁ)) - l; projjz, (5;)

I#i

here the first term is zero since the projection is orthogonal, and the remaining terms
are 0 by the inductive hypothesis (all previous Ks are mutually orthogonal).

By induction, all the s are nonzero, in the span of the initial basis, and are mutually
orthogonal, so also form a basis of the subspace. |

Definition 3.6.7: An orthonormal basis is an orthogonal basis with members normalised
to length 1.

4 Determinants

4.1 Definition

Definition 4.1.1: An n x n determinant is a function det : M, ,,, — R s.t.
() det(Byy sk - B+ By orves ) = At (B, ooy By oo ) for i 4 j

(ii) det(ﬁl, cevy By ey Py e P, ) = —det(ﬁl, vy By ooy Pis ...,ﬁn) for i # j

(iii) det(py,...,k- p;,..., p,) = k - det(py, ..., p,) for any k € R

(iv) det(I) = 1 where I is an identity matrix.

Common notation is |T'| = det(T").

Remark: Condition (ii) is redundant because row swaps can be done by a series of row
additions and multiplications.

Lemma 4.1.2: A matrix with two identical rows has a determinant of 0.
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Proof: Swapping the rows multiplies the determinant by —1, but gives an identical
matrix and so the determinant must be the same; therefore the determinant must
be zero. O

Lemma 4.1.3: A matrix with a zero row has a determinant of 0.

Proof: Multiplying the zero row by a scalar k multiplies the determinant by k, but
does not change the matrix; therefore the determinant must be invariant under scalar
multiplication and must be equal to 0. O

Lemma 4.1.4: A matrix is nonsingular iff its determinant is nonzero.
Proof:

Take a matrix T" with determinant zero, and carry out Gauss-Jordan reduction to
get to T'. By Conditions (i) - (iii) of the determinant function, det (T) =0also; if T
were nonsingular then it would reduce to the identity matrix, which has determinant
equal to 1; therefore, T' is singular. If T" were nonsingular, it must have a nonzero
determinant to begin with. O

Lemma 4.1.5: The determinant of an echelon form matrix is the product down the
leading diagonal.

Proof: If the echelon matrix is singular then it has a zero row, so the determinant
is zero which is the product down the leading diagonal.

If the echelon form matrix is nonsingular, then none of its diagonal entries are zero,
so we can divide by those entries and use Condition (iii) to get 1s on the diagonal.
Then we eliminate the nondiagonal entries, which by Condition (i) does not change
the determinant, to get to the identity matrix, which has determinant 1. So, in this
case we also get the determinant being equal to the product down the diagonal. O

Lemma 4.1.6: For each n, if there is an n x n determinant function then it is unique.
Proof:

Suppose there are two functions det,, det, : M — R satisfying the properties of

nxn
Definition 4.1.1 and its consequences Lemmas 4.1.2 - 4.1.5. Given a square matrix
M, fix some way of performing Gauss’s method to bring the matrix to echelon form.

By using this fixed reduction, we can compute the value that these two functions
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must return on M, and they must return the same value (by Lemma 4.1.5). Since
they give the same output on every input, they are the same function. O

Definition 4.1.7: Let V be a vector space. A map f: V"™ — R is multilinear if
(1) f(Pry ey U+ W, ooy Br) = F(Bry ooy Uy ooey B) + F(B1y ooy Wy ey Pry)
(il) f(Pryen k- Ty Br) =k - F(Pry ey Uy ooy B)

Lemma 4.1.8: Determinants are multilinear.
Proof:

Property (ii) here is just Condition (iii) in Definition 4.1.1, so we need only verify
property (i).
TODO O

Corollary 4.1.9: Determinants can be expressed as a sum of determinants of matrices
with only one nonzero value in each row, or as a linear combination of permutation

matrices.
Ezxzample:
12 10 10 02 02
d t(3 4) —det(3 0) +det(0 4> +det(3 0) +det(0 4)
10 02 . .
= det (0 4) + det <3 O) because an all-zero column gives a 0 determinant
10 01
= 4det(0 1) + 6det(1 0).

Definition 4.1.10: An n-permutation is a bijective function on the first n positive
integers @ : {1,...,n} = {1,...,n}.

In a permutation, each number 1, ..., n is an output associated with exactly one input. We
sometimes denote a permutation as the sequence ® = (®(1), ..., &(n)).
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Definition 4.1.11: The permutation expansion for determinants is

[P, 'Htj,@(j)]
Jj=1

; are all of the n-permutations, and Fp_is the permutation matrix corre-

n

=)

i=1

where &, ..., ®

n
sponding to the permutation ®;.

This is derived from using both conditions of multilinearity to break up the matrix into
multiple matrices corresponding to each permutation, and then extracting the relevant
coeflicients.

Theorem 4.1.12: For each n there is an n x n determinant functions.
Proof:
By Lemma 4.1.19. O

Theorem 4.1.13: The determinant of a matrix is equal to the determinant of its
tranpose.

Proof:
TODO (in Hefferon) O

Corollary 4.1.14: A matrix with two equal columns is singular. Column swaps change
the sign of a determinant. Determinants are multilinear in their columns.

Proof:

By transposition. O

Definition 4.1.15: In a permuation ® = (..., k, ..., j, ...), elements such that k& > j are in
an inversion of their natural order.

Lemma 4.1.16: A row-swap in a permutation matrix changes the number of inversions
from even to odd, or from odd to even; it changes the parity of the number of inversions.

Proof:
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If we swap adjacent rows, all other row relations remain unchanged, and we either
create or remove an inversion between the two rows we changed. Hence the parity
changes.

To swap non-adjacent rows i and j (with j > i), we can instead swap adjacent
rows (j —i) times (i > i+ 1,i+ 1> i+ 2,...,5— 1 < j), followed by (j —i — 1) row
swaps back up; this is the sum of two consecutive numbers which is odd, so the
parity changes an odd number of times, so the parity changes. O

Definition 4.1.17: The signum of a permutation sgn(®) is —1 if the number of inversions
in @ is odd, and +1 if the number of inversions is even.

Corollary 4.1.18: If a permutation matrix has an odd number of inversions then
swapping it to the identity takes an odd number of swaps. If it has an even number of
inversions that swapping to the identity takes an even number.

Proof:

The identity matrix has zero inversions. To change an odd number to zero requires
an odd number of swaps, and to change an even number to zero requires an even
number of swaps. |

Lemma 4.1.19: The function d : M,,,,, — R s.t.
n n
d(T)=7 [Sgn(q)) ' Hta‘,@i(j)]
i=1 Jj=1
is a determinant.
Proof:
We check the four conditions from Definition 4.1.1.

Condition (iv) holds because in the expansion of d(I), the only nonzero term is the
one corresponding to the identity permutation, which has a signum of 1, hence the
determinant is 1.

kp, .
For Condition (iii), suppose T’ — 7. Then

44 of 69



MT2025 Linear Algebra Lecture Notes | https://www.sophia.fish/lecture-notes/

n B n
d(T) =2 |sen(®) ][40
i=1 [ J=1
n
= sgn(®;) - k- 1y 0,1) H 4,;(9)
=1 1<j<n;
I il
n n
=k Z[sgn(@i) ' Htaﬁbz(])
i=1 Jj=1
= k- d(T).
kpi+pm .
For Condition (i), suppose T'—— T'. Then
A n [ L
d(T) = Zl sgn(®;) - Hlty,qa(a)
=1 [ J=
= Z sgn(®;) - (ktl o,(m) T tm <I>l(m)) H tj,2,0)
=1 1<j<n;
i J#Fm
= Z sgn(®;) - k- £y o (m) H tj.2,0)
=1 1<5<n
i j#m
n
4 Z Sen(®,) 4 (m) H t;®,(; | by distributivity of addition over multiplication
i=1 1<j<n;
i#m
=k sgn(®;) - t, ®,(m) H i 0|t d(T)
i=1 1<j<n;
j#m
=d(T)

since the first sum is the determinant of the matrix with row [ the same as row m.

Condition (ii) follows from Condition (i). O

Corollary 4.1.20: There exists a determinant function det : M,,,,, — R for every n.
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4.ii Geometry of determinants
Definition 4.2.1: In R” the box or parallelepiped formed by (¥, ..., ¥,,) is the set {t,9; +

v+ t,0, | ty, . t, €10,1]}.
Then the signed area of the box, denoted A, is |(¥; . ¥,)].

Definition 4.2.2: The sign of the determinant reflects the orientation or sense of the box.

Theorem 4.2.3: A transformation ¢ : R™ — R"™ changes the size of all boxes by the same
factor, namely the size of the image of a box |S| is |T'| times the size of the box |S| where
T is the matrix representing ¢ with respect to the standard basis.

That is, the determinant of a product is the product of the determinants; |T'S| = |T'| - |S|.
Proof:

Suppose T is singular and thus does not have an inverse. Note that if TS is
invertible then there is an M s.t. (T'S)M = I,s0 T(SM) = I, so T is invertible. The
contrapositive of that observation is that if T is not invertible then neither is T'S -
if det(7") = 0 then |T'S| = 0.

Then suppose that T is nonsingular. Any nonsingular matrix factorises into a
product of elementary matrices T' = E;E,---E,.. Then if |ES|=|E|-|S| for all
matrices S and elementary matrices E, then |T'S| = |E{Ey+-E,.| = |E;|-|E,| - |S| =
|EyEy--E, |- |S] = |T|S].

TODO : prove that determinants of elementary matrices are multiplicative. O

Corollary 4.2.4: If a matrix is invertible then the determinant of its inverse is the
reciprocal of its inverse, i.e. det(T') = (det(T)) .

Definition 4.2.5: The volume of a box is the absolute value of the determinant of a
matrix with those vectors as columns.
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Cramer’s rule

Think about a linear system as being a set of vectors forming a parallelogram, and a target
point being the far point of a larger, stretched parallelogram. Then we want to find the factors
by which we scale the parallelogram to get the larger one.

TODO : diagram

Theorem 4.2.6 (Cramer's rule): Let A be an n X n matrix with a nonzero determinant,
let b be an n-tall column vector, and consider the linear system AZ = b. For any i €
{1,...,n} let B; be the matrix obtained by substituting b for .. TODO

note: this is not very efficient.

4.iii Laplace’s expansion

Definition 4.3.1: For any n x n matrix T, the (n —1) X (n — 1) matrix formed by
deleting row ¢ and column j of T' is the 4, j- minor of 7.

The i, j- cofactor T, ; of T is (—1)"*7 times the determinant of the ,j minor of T'.

Theorem 4.3.2 (Laplace’s formula): Where T is an n x n matrix, we can find the
determinant by expanding by cofactors on any row ¢ or column j.

|T| == tlvl . ’1—;’1 + t’L,2 . 117',2 + .. + tz,n . 1—;7,’1 fOI' some row 7:
=ty ;T ;+ts; Ty ;+..+t,; T,  for some column j

Proof:
TODO (exercise in Hefferon) O

Definition 4.3.3: The matrix adjoint (or adjugate ) to the square matrix T is

T12 TQ’Q “ee T’I’L2

adj(T) = | ’
T, Thy - Thn
Note the entries are transposed from what we’d expect - adj(T); ; = T} ;-

Theorem 4.3.4: Where T is a square matrix, T - adj(T") = adj(T") - T = |T| - I. Thus if
T has an inverse, i.e. |T| # 0, then T~ = (|T|)~* - adj(T).

Proof:
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The diagonal elements of T' - adj(T) are all equal to |T'|, as they are Laplace expan-
sions, ¢; 1151 + ... + 4,15 -

Then an element in column ¢ and row j, with i # j, is equal to tin L+t .15,
which is the Laplace expansion for a matrix with row ¢ equal to row j, which must
be equal to zero.

Hence T -adj(T) = |T| - I. O

Remark: This is also not an efficient method of calculating matrix inverses, unless the

matrix is sparse (i.e. mostly zeros).

5 Similarity

5.i Complex vector spaces

From now on, scalars will be complex.

Theorem 5.1.1:

Let p(x) be a polynomial. If d(z) is a non-zero polynomial then there are quotient and
remainder polynomials g(z),r(z) s.t. p(x) = d(x)q(z) + r(z) where the degree of r(x) is
strictly less than the degree of d(z).

Corollary 5.1.2: The remainder when p(z) is divided by (z — A) is the constant poly-
nomial r(z) = p(A).

Proof:

The remainder must be a constant polynomial as it has a degree less than one. Note
that p(z) = (z — A\)g(x) + r(z); substituting in z =X gives p(A) = (A —N)g(\) +
r(A) =r(A), so r(A) = p(A); but r is a constant so r(z) = p(\) for all z. O

Corollary 5.1.3: If X is a root of the polynomial p(x), then (z — A) is a factor of p(z).

Proof: By Corollary 5.1.2, p(z) = (z — A)g(z) + p(A), but since A is a root of p(x),
p(A) = 0; hence (z — A) | p(z). O
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Theorem 5.1.4: Any constant or linear polynomial is irreducible over the reals. A
quadratic polynomial is irreducible over the reals iff its discriminant is negative. No cubic
or higher-degree polynomial is irreducible over the reals.

Corollary 5.1.5: Any polynomial with real coefficients factors into a product of linear
and irreducible quadratic polynomials with real coefficients. That factorisation is unique;
any two factorisations have the same factors raised to the same powers.

Theorem 5.1.6 (Fundamental Theorem of Algebra): Polynomials with complex coeffi-
cients factor into linear polynomials with complex coefficients. The factorisation is unique.

Remark: The standard basis for C™ is the same as the standard basis for R"”.

5.ii Similarity

Definition 5.2.1: The matrices T and T are similar if there is a nonsingular P s.t.
T =PTP.

Remark: The zero matrix is similar only to itself (since PZP~! = PZ = Z); the identity
matrix is also similar only to itself (PIP~! = PP~ =1).

Theorem 5.2.2: Similarity is an equivalence relation.
Proof:
Similarity is reflexive: T = ITI 1.
Similarity is symmetric: if 7= PTP~!, then T = P~1TP.

Similarity is transitive: if B = PAP~! and C = QBQ ™}, then C = (QP)AP Q! =
(QP)A(QP)™. O

Remark: Matrix similarity is a special case of matrix equivalence: S, T similar = S, T
equivalent, but the converse is not true.
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Remark: Some (but not all) similarity classes have a canonical representation of a
diagonal form.

Definition 5.2.3: A transformation is diagonalisable if it has a diagonal representation
with respect to the same basis for the codomain as for the domain. A diagonalisable matrix

is one that is similar to a diagonal matrix: T" is diagonalisable if there exists nonsingular
P such that PTP~! is diagonal.

Example:

Proposition: This matrix is not diagonalisable:
00
v (0)

Suppose that there exists a diagonal matrix D = PNP~!. Then consider

Proof:

D? = PNP'PNP!

= PN?p! =P (0 0) p!

(00
~\oo)
But D? = (d% 0 ) , hence d; = d, = 0. Hence D is the zero matrix, but the only

0 d2
matrix that is similar to the zero matrix is the zero matrix. Contradiction. [

Lemma 5.2.4: A transformation ¢ is diagonalisable iff there is a basis B and scalar
Apy ey A, S.E t(ﬂ:) = \,;B; for each i.

Proof:

Consider a diagonal representation matrix
Ay 0
Repp p(t)=| i =
0 A

Then for a basis element f,,
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0 0

R . A 0
Repp (t(6;)) = Repp,p(t)Reps (f;) = 0 As 1| =1
n 0 0

Definition 5.2.5: A transformation ¢: V — V has a scalar eigenvalue A if there is a
nonzero eigenvector 5 € V such that t(E ) =X 5 .

Definition 5.2.6: A square matrix T has a scalar eigenvalue A\ associated with the
nonzero eigenvector ¢ if T'¢ = A - (.

Remark: To find the eigenvalues of a matrix M, consider M E = xf = (M —zI )Z 0.

If M — zI is nonsingular, then there is exactly one solution which is the trivial one, Z
0. Therefore, we solve for [M — zI| = 0, then for each solution of z (the eigenvalues), we
can substitute back in to (M — 2I)¢ = 0 to find an eigenvector ¢.

Remark: If the matrix is upper diagonal or lower diagonal, the polynomial is easy to
factorise as it is just the product along the diagonal.

Remark: If there is a repeated root with multiplicity p, then that A; is an eigenvalue with
algebraic multiplicity p. In general p is greater than or equal to the geometric multiplicity
of the eigenvector, i.e. the dimension of the eigenvector space.

Remark: Matrices that are similar have the same eigenvalues, but not necessarily the
same eigenvectors.

Definition 5.2.7: The characteristic polynomial of a square matrix 7" is the determinant

|T — «I| where z is a scalar variable. The characteristic equation is |T'— zI| = 0. The
characteristic polynomial of a transformation ¢ is the characteristic polynomial of any

matrix representation Repg p(t).
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Remark: The characteristic polynomial of an n x n matrix, or of a transformation ¢ :
C™ — C™, is of degree n. See problem sheet for proof that the characteristic polynomial is
well-defined, i.e. is the same regardless of of the bases used to represent the transformation.

Lemma 5.2.8: A linear transformation on a nontrivial vector space has at least one
eigenvalue.

Proof: Any root of the characteristic polynomial is an eigenvalue; every polynomial
of degree > 1 has at least one root in C. O

Definition 5.2.9: The eigenspace of a transformation ¢ associated with the eigenvalue A
is V), = {E | t(Z) = )\C}. The eigenspace of a matrix is analogous.

Lemma 5.2.10: An eigenspace is a nontrivial subspace of R™.
Proof:
Note that V, is nonempty; it contains the zero vector since t(()) =0=X-0.

Also note that V) contains a nonzero vector because by definition A is an eigenvalue
iff t(z ) = )\Z has a nontrivial solution for (.

Finally, Vj is closed under linear combinations:
t(clfl + ..+ cnfn) = clt(zl) + ...+ cnt(fn) since transformations are structure-preserving
= ClAzl + e + C’I’LAE’I’L

= )\(0151 + ...+ ann) since the (s are eigenvectors with eigenvalue A,

hence t maps elements of V, to elements of Vj. O

Theorem 5.2.11: For any set of distinct eigenvalues of a map or matrix, a set of
associated eigenvectors, one per eigenvalue, is linearly independent.

Proof:
By induction on the number of eigenvalues.

For zero eigenvalues, this is trivially true as the set of associated eigenvectors is
empty.

Assume true for k distinct eigenvalues.

52 of 69



MT2025 Linear Algebra Lecture Notes | https://www.sophia.fish/lecture-notes/

If there are k+ 1 distinct eigenvalues, A, ..., A\, ;, and let ¥;,...,9,,,; be associ-
ated eigenvectors. Suppose that 0 = €10y + ... + €4 1Up4 - From this we derive two
equations: by applying ¢ to both sides, 0 = ¢; \;T; + ... + Chg1 Mg 1Uk41; and by mul-
tiplying by A, giving 0= Ap41C1U7 + oo+ Apy1Crp1Upyq - Subtract these equations
to get 0= c;(A\jy1 — M )¥; + o + € (A1 — A )Ug- Then the inductive hypothesis
tells us that these k vectors are all linearly independent, so there is only a trivial
solution to this equation, i.e. ¢; (A1 — A1) = ... = (A1 — Ap) =0, hence ¢4
must be zero, so the k + 1 vectors are linearly independent.

Since true for k 4 1 if true for k, and true for k = 0, true for any number of eigenvalues

by principle of induction. |

Corollary 5.2.12: An n X n matrix with n distinct eigenvalues is diagonalisable.
Proof:

Form a basis of eigenvalues and apply Lemma 5.2.4. O

6 Matrix factorisation

6.1 LU factorisation

Definition 6.1.1: For an n X n matrix, we take a series of (n — 1) “macro” transforma-
tions (made up of the product of some elementary matrices) Ly, Ly, ..., L,,_; that reduce A
to echelon form, for now assuming that no row swaps are necessary. Let U = L,,_;---L, A,
L= Ly*L;',, then the LU factorisation of A is A = LU.

n—1»

We end up with L being lower triangular with 1 along the diagonal and U being upper

triangular.

What follows is the general procedure for LU factorisation.

Let Z; denote the kth column of the matrix before (macro-)step k. Then L, should be
chosen so that

Tk Ty
o X Ly o X
= RE S La, = | TR
k kT
LTk+1,k 0
Ty, 0
. . . Z;
To do this, we subtract £, times row k from row j > k, where ¢, , = —LE,
) 3 k,k
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Then define £, = ‘ . Then L, can be written

1,k
_ 7 =T
L,=1-7¢.€,.

Remark:

This looks like the dot product of # and €, but is the other way round! This just
defines L, to be the identity matrix, with the kth column being —7,.

By the sparsity pattern of Z, &, we have égo’? r = 0. Therefore

(1-2:80) (1 +24e)) =1 — 6,1 2,8

—1—7,-0-8&
=1
so Lyt = I+z/’7kéz - that is, inverting L, is done by negating the subdiagonal
entries.
Remark:

Negating the subdiagonal entries does not in general compute the inverse of a lower-
triangular matrix - but if the only non-zero subdiagonal entries are all in the same
column, it will work.

Now considering L := L7!-L; !, = (I + z,’?lé’f)---(l + fn_lég) and taking into consider-
ation the sparsity patterns of the Zs, é’ZEk =0andso L:=1+ flé'lT +..+ fn_lgjl_l, ie.
the entries in L are just the nonzero subdiagonal entries in the L;s.

Definition 6.1.2: (the LU algorithm)
U:=AL:=1
fork:=1ton—1:

forj:=k+1ton:

_ Yk

1., =
J,k
Uk k

uj,k:n = uj,k:n - lj,kuk,k:n

where u; .., denotes the subrow u; j, ..., u; .
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Remark: To minimise memory use, use only one array that contains both L and U,
making the 1s on the diagonal of L implicit.

Remark: There are two floating point operations (flops) per modified entry (one multi-
plication, one subtraction). So approximately §n3 in the limit (n® from O(n"2) flops per
each of n macro steps).

Remark: But also note that this lends well to parallelism.

Corollary 6.1.3 (Solving linear systems via LU factorisation):
Suppose we have a linear system AZ = b and an LU factorisation A = LU. Then
LUZ = b,
]

so we can solve the system by first solving Ly = b and then UZ = .

Thanks to the sparsity pattern of L, the system Ly = can be efficiently solved by
forward substitution (in the natural way, top down) (7). Similarly, UZ = ¢y can be solved

by backwards substitution (bottom-up).

Remark: Each of these requires about n? flops, much less than needed for computing

the LU factorisation, hence the overall cost is that of the factorisation, %n?’ in the limit.

Remark: This works well for multiple linear systems with the same matrix A and
different right-hand sides b - don’t invert A, just LU-factorise it.
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Definition 6.1.4: The LU algorithm can give large errors when using floating point
arithmetic when we restrict to no row swaps, even when not dividing by 0 (consider if we
replaced a zero in the top left with 10720, then we get something that is pretty close in
the pure case, but the floating-point errors are unacceptable). So row swaps are necessary
for stability. With row swaps (pivoting), we get PLU factorisation .

Definition 6.1.5: In each macro-step of an LU factorisation, z;, ; is called the pivot .

But we might want a different pivot, if z;, ; is zero or small; so carry out a row swap such
that the largest value in ., , is the pivot. Recall that a row swap is represented by a
permutation matrix.

Now the multipliers in each macro step are at most 1 by absolute value.

Then we have L,, P, ;---L;P,A = U, but in fact we can separate the Ps and Ls and get
that PA = LU where P = P,_;---P,, and L is a lower triangular matrix related to the L,
s, as described below.

Lemma 6.1.6:

Given U =L, F, ;L A, we can rearrange the row operations to give U =
(LyL5)(ByyR) A where L = (IT_, Pg) L, (1T, Pf)g

erations can be reordered, with the row additions having their subdiagonal entries

. That is, the row op-

permuted.
Proof:
L;LLll‘PnP)l = Ln(PnLn—lpnil)(PnPn—an—QPn_fllpnil)”‘(Pn”']DQLIP2_1”'Pn71)Pn”'Pl
— L, PL,P,.

Remark: The product of the Ljs is again lower-triangular and can inverted by
negating the subdiagonal entries.

Corollary 6.1.7: With L:=(L;_,--L}),P:= P, ;---P, we have that PA = LU,

n

which is a PLU factorisation of A.

Remark: Row swaps are known as partial pivots . Complete pivoting would also

involve column swaps.
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Definition 6.1.8: (Algorithm for PLU factorisation with partial pivoting)

U=AL:=1,P:=1
fork:=1ton—1:
select © > k to maximise |uz k’
U kin < Ui
bek—1 <= li1p1
Prin €7 Pilmn
for j:=k+1ton:
Lig = ik
Uk k

uj,k:n = uj,k::n - lj,kuk:,k:n

Remark: The asymptotic number of flops is still §n3, but we now get better numerical
stability.

Corollary 6.1.9 (Solving linear systems using PLU factorisation):

LUZ = Pb
g
Lj = Pb

Solve for y

Then solve UZ = y..

6.ii QR factorisation

o factorises A into QR where @Q’s columns are orthogonal, and R is upper-diagonal (or, Right
diagonal?)

Recall that if vectors in a set are nonzero and pairwise orthogonal, then that set is linearly
independent.

Recall also that (AB)T = BTAT and (AB)! = B~1A~L.

We extend orthogonality to matrices.

Definition 6.2.1: A square matrix is orthogonal or orthonormal if its columns have
length 1 and are pairwise orthogonal. Equivalently, Q € R™*™ is orthogonal iff Q" = Q 1,
ie. QTQ=1.
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Lemma 6.2.2: Multiplication by an orthogonal matrix preserves the length of vectors.

Proof:

QZ)? = (Q1)TQi=1'QTQ7 =1 = |3,

Lemma 6.2.3: Similarly, angles are preserved under multiplication by an orthonormal
matrix.

Proof:

Q) - (Q9) = (@) (@)
i'QQy
i1Q Qg

T

o
8l

Il
8l
< <

Remark: Geometrically, multiplication by an orthogonal matrix is a rotation/reflection.

Definition 6.2.4: A similar definition of orthogonality can be defined for non-square

matrices if the columns are non-zero, pairwise orthogonal, and each sum to 1. This
definition still satisfies Q'Q = I (but! QQ' # I in general).

Theorem 6.2.5: Every matrix has a QR factorisation.

Proof: Recall the Gram-Schmidt process. We can define a slightly different process

to produce an orthonormal basis for vectors ay, ..., d,,:

G,
ST
62 _’2 — (al 62)61
| 2 (al : 6’2)61|
a' _ Zin B ((_jl an)zjl B B ((_jn—l an)(_jn—l
" ‘c_in - (61 ’ an)al - - (ﬁnfl Zin)_’n71|
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Defining Tij = q; - aj for 1 < j, and Tii = |d; — (q1 - @;)q; — - — (§;_1 - G;)G;_1], then

we have
119 = 4
T9,292 = Qg — 71 241
Tnmldn = Qp — T(17 n)ql e T 1 ndn—1-
Rearranging gives
a; =T11%
Ay = T1 241 + T 207
a, = rl,nql + .t rn,nq’rw

so we have now obtained a QR factorisation of A, A = QR:

. . 11 T1,2 " Tin

* * * r e

- - o N - 2.2 2.n

a, Qp, =% " 4n o :’
rn,n

Definition 6.2.6: This is a reduced/thin QR factorisation. A full QR factorisation has
additional columns in @) to make it square, and corresponding zeros in R.

Remark: The algorithm can be written as:

for j := 1 ton

qj = aj
fori:=11t0 (j - 1)
r ij := qi”T aj
qj :=qj - r_ij qi
r_jj := abs(qj)
aj =aj / r_jj

Remark: Each iteration of the innermost loop involved roughly 2m (scalar) multiplica-
tions and 2m additions/subtractions. Overall about 4( %ng) = 2mn? flops, where n x m
in the shape of A.
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Remark: The classical Gram-Schmidt process is numerically unstable! So we can use the
modified Gram-Schmidt process instead.

for i :=1 ton
vi = ai

for i :=1 ton
r ii := abs(vi)

gi =vi / r_ii
for j = (1 + 1) ton
r ij := qi”T vj
vj :=vj - rij qi
This is mathematically equivalent, and has the same flop count, but is more numerically
stable: each 9; starts as d;, and then has the g; (for j < i) components removed as soon as
they become available, so the r; ;s aren’t “disturbed” by the presence of already removed
components.

Remark: Gram-Schmidt (for thin QR factorisation) can be viewed as triangular
orthogonalisation: AR;---R,, = @, i.e. creating an orthogonal matrix via multiplication by
triangular matrices.

Other methods (for full QR factorisation) proceed by orthogonal triangularisation:
Q,, Q1A = R, ie. creating a triangular matrix via multiplication by orthogonal matrices.

Such methods use Householder reflections or Givens rotations . They are numerically

stable (because multiplying by orthogonal matrices tends to be numerically stable). Flop
count (Householder and m = n) is about 3n3.

Solving linear systems via QR factorisation

Consider a square system AZ = b with A nonsingular, and a QR factorisation A = QR. Then
QRZ =1
<= Ri=Q",
which can be solved easily by substitution as R is upper triangular.

The overall cost is dominated by the factorisation; this is more expensive than LU, but has
better numerical stability.

Least squares

Consider AZ = b with A € R™*": more equations than unknowns ( overdetermined ).

We assume that A has full column rank n. In general the system cannot be solved exactly.

The least squares problem is to find Z such that ‘B — AZ ‘ is minimised. I.e. we want to find
Z such that b — AZ is orthogonal to the (hyper-)plane spanned by the columns of A; if it is
not orthogonal, then the residual will be longer than necessary. Alternatively, AZ should run
parallel to the plane spanned by the columns of A, directly “underneath” b. Equivalently:

60 of 69



MT2025 Linear Algebra Lecture Notes | https://www.sophia.fish/lecture-notes/

AT(b— AZ) =0 <= ATAZ = AT¥;

we call this the normal equation .

Lemma 6.2.7: If A € R™ " has full column rank n, then AT A is nonsingular.
Proof:
We show that the nullspace of AT A is trivial.

Let 7 € R™ with ATAZ = 0. Then |AZ|? = (AZ)- (AZ) =7 ATAZ =0, so AZ = 0.
Since the columns of A are linear independent, it follows that Z = 0.

O

Hence the normal equation can be solved uniquely, so there is a unique solution to the least
squares problem.

We can do this by QR factorisation.
If A= QR, then
ATAZ=ATb< RTQ"TQRZ=R'Qb< RTRZ=R'Q7b

Since A has full column rank, the matrix R is nonsingular. Thus, multiplying with the inverse
of RT gives the system

Rz=Q7b

which can be solved easily by back-substitution.

Remark: The least-squares method can be used to find a linear regression - we want to
minimise the sum of the squares of the errors, where

to find the best regression line y = mz + c.

Although in two dimensions, QR factorisation probably isn’t the easiest way to solve it, for
higher-dimension regressions, it might be useful. Useful for machine learning!

6.iii Norms and Singular Value Decomposition

Definition 6.3.1: The 2-norm |Z|, of a vector Z € R™ is equal to the length, or Euclidean

n
7 =&, = /> a? = VaTd = VE- .
i=1
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Definition 6.3.2: More generally, a vector norm is a function ||-| : R™ — R that satisfies
VZi,yj e R relR:
(i) |Z| > 0 with equality iff Z = 0;
(i) |2+ gl < 2] + [
(iil) [rz] = [r[]Z].

Remark: Unlike determinants, norms are not unique.

Definition 6.3.3: A commonly used norm is the p-norm :

n »
"j’:”p = (Z |$Z’p) s fOI‘ p Z 1.
=1

Definition 6.3.4: In R™, a unit ball is the region for which |Z|| =1 for some norm ||-|.
In R2, for p-norms: TODO images of unit balls for p = 1,2, 4, co.

Definition 6.3.5: A vector norm || : R™ — R induces an induced matrix norm || :
R™*" 5 R:
|AZ]
|Al = E
zerm\{0} I1T
= sup | AZ]
ZER™;
1Z1=1

where sup denotes the supremum of a set; that is, a maximal element which is not
necessarily contained within the set. For finite sets, this is the same as max.

Intuitively, this is the largest amount by which the norm of a vector Z can be scaled by
multiplying A with Z.

Lemma 6.3.6: For any A™ ", 2 € R", |AZ| < | A||Z| for a vector norm [-| : R — R”
and its induced matrix norm |-| : R™*™ — R.
Proof:

By the definition of an induced matrix norm, ||A| = 14%] vz € R™, hence |AZ| <

[El

lANNZ]- O
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Remark: Matrix norms need not be induced; since matrices can be thought of as vectors
in the vector space of matrices, norms that satisfy the prior definition can be defined on
matrices, including the element-wise Frobenius norm .

Lemma 6.3.7: Let |-| denote an induced matrix norm. Then |AB| < |A]|B].
Proof:

|ABZ| < |All||BZ| by Lemma 6.3.6
< | Al B|Z| by Lemma 6.3.6.

O
Lemma 6.3.8: Let Q € R™*™ be an orthogonal matrix, and A € R"™*". Then
Q2 = 1;
IQA[ = [ All,-
Proof:
This is a rephrasing of Lemma 6.2.2. O

Definition 6.3.9: The singular value decomposition (SVD) of a matrix A € R™*"
(where m > n) is a factorisation A = UXVT, where U € R™*™ and V € R™™ are orthog-
onal, and ¥ € R™*" is diagonal. The diagonal entries o; > 09 > ... > 0,, > 0 are called
singular values of A.

The (pairwise orthogonal) columns of U are the left-singular vectors of the SVD, and the
(pairwise orthogonal) columns of V' are the right-singular vectors of the factorisation.

The SVD describes the action of A as a series of 3 transformations:
o rotation/reflection by V'T;

o scaling along the axes by 3;

 another rotation/reflection, by U.

Corollary 6.3.10: The image of a unit sphere under any matrix is a hyperelipse.

Remark: It can be shown that every matrix has an SVD (Theorem 6.3.13).
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Lemma 6.3.11: The action of A on the right-singular vectors 9, can be described by

Proof:
A=UxV"
= UXV~! since V is orthogonal
= AV =UX

— A’Ui == Ulul

Theorem 6.3.12: The map defined by a matrix A is the map represented by the diagonal
matrix X, with respect to the domain and codomain bases consisting of the left-singular
and right-singular vectors, respectively.

Proof:
Let b = AZ for some Z € R™.

Let Z’ be the representation of Z in the basis of the right singular vectors, (v, ..., 9,,),
st. 7 =VTZ.

Similarly, let b’ be the representation of b in the basis of the left-singular vectors,
(Tyy ey Ty )y st 0 = U TD.

Then

S
Il
-
_'
S

— UT Az
—UTUSV 2
— VT

=/

Theorem 6.3.13: Every matrix A € R™*™ has an SVD, with uniquely determined
singular values o;s. Further, if A is square and the o;s are distinct, the left- and right-
singular vectors are uniquely determined up to signs.

Proof:
TODO (in Trefethon & Bau) O
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Remark: An approximate SVD for an m x n matrix can be computed in O(mn?) flops.
This typically involves an iterative phase, as the singular values are in general irrational,
but this is typically not a bottleneck.

Remark: SVD looks similar to eigenvalue decomposition, but is not the same; if a
diagonalisable matrix A has an eigenvalue decomposition A = UXU !, then this is an
SVD of A iff U is orthogonal, which is not generally the case - eigenvectors need not be
orthogonal.

Theorems 6.3.14 - 6.3.20 link properties of a matrix A € R™*™ to properties of its SVD, given
that we let » < min{m,n} be the number of nonzero singular values of A, and that we have
0,2 ..20.20.

Theorem 6.3.14: The rank of A4 is r.

Proof: The rank of a diagonal matrix is the number of nonzero diagonal entries.
Since ¥ has full rank - since by definition all o;s are greater than 0 - the rank is .0

Theorem 6.3.15: (i, ...,4,) is an orthonormal basis of A’s column space. Similarly,
(Upg1s .o, Up) is an orthonormal basis of A’s nullspace.

Proof:

This follows from the fact that R(3) = (€, ..., €,.) and N () = (€,,1, ..., €,,); the left-
and right-multiplications of U and V' respectively give the desired bases, which are
orthonormal because U,V are orthogonal. O

Remark: Column space and null space can be computed by QR factorisation, but SVD
is more accurate.

Theorem 6.3.16: |A|, = 0, where o, is the largest singular value of A.
Proof:
Al = sV,

= %l
= 0-1.
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Theorem 6.3.17: The nonzero singular values of A are the square roots of the nonzero
eigenvalues of AAT.

Proof:

AAT =UZVTVETUT
=UXVVXU~! since ¥ diagonal and U,V orthogonal
=Ux2U 1,

hence AAT is similar to X2 so has the same eigenvalues as ¥2, which are o3, ..., 02.0]

Lemma 6.3.18: The determinant of any orthogonal matrix @ is 1.

Proof:

Theorem 6.3.19: Let A € R™" be a square matrix. Then

|det(A)| = ﬁa

i=1

Proof:
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|det(A)| = |det(UZVT)|
= |det(U) det(X) det(V'T)]
= |det(2)| by Lemma 6.3.18

since X diagonal

i=1

n
Ha' since o; > 0 for 1 < ¢ < n.
i=1

Theorem 6.3.20 (Low-rank approximation): For any k < r, define

k
E: 07
=1

Then

|A—Al, = inf A= DBy =04,
rank( )< k

where inf denotes the infimum (equivalent to minimum for finite sets); that is, A, is a
low-rank approximation of A, where the Euclidean distance between A and A, is oy 4.

Proof:
TODO o

Remark: |[A— A.||:=0if k = min{m,n}.
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Permutation expansion .........c.....cc....... 43
Permutation matrix ..........cccooooiiit 34
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Plane ...cooooiiiiii 6
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Principle diagonal ........cccccccceeeeiiiiiiie 33
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SIngular ....oovvveiiiiiiii 6, 31
Singular value decomposition .............. 63
Singular values .........coooeeiiii 63
) 07 0 PR 14
Spanned by ....ccooveiiiiiiii 4
Standard basis .......coeeeeviiiirieiiiiineeeiien. 17
SUDSPACE .o 13
SUIM e 22
SUPTeMUM .oeevvviiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeee 62
TrACE ceevieiiiiieciie e, 27
TranspoSe «...oeeeevvereeeiiiiieiiiinieiiiineecenaen, 21
Trivial vector space ...........ceeeveevininnneee. 13
Two-sided Inverse .......ccccceeeveeieiiinnnnene. 34
Unit ball ..o, 62
Unit matrix ..oooeevveiiineiiieeeeeeeceeeen, 33
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